
Journal of Network and Computer Applications 122 (2018) 115–127

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Parallelization of space-aware applications: Modeling and performance
analysis

Franco Cicirelli, Agostino Forestiero, Andrea Giordano, Carlo Mastroianni ∗

ICAR-CNR, via P. Bucci 7/11C, Rende (CS), Italy

A R T I C L E I N F O

Keywords:
Space-aware applications
Petri Nets
Parallel applications
Performance evaluation
Multi-agent systems

A B S T R A C T

Many applications in fields like sociology, biology and urban computing, need to cope with an explicit use of a
spatial environment, or territory. Such applications, referred to as space-aware applications (SAAs), are based
on a set of entities that live and operate in a territory. Parallel execution of space-aware applications is needed
to improve the performance when the demand of computational resources increases. Despite the great interest
towards SAAs, there is a lack of models and theoretical results for assessing and predicting their execution
performance. This paper presents a novel framework, based on Stochastic Time Petri nets, which is able to
capture the execution dynamics of parallel SAAs, and model the aspects related to computation, synchronization
and communication. The framework has been validated by comparing the predicted performance results for
a testbed application, i.e., the ant clustering and sorting algorithm, to those experienced on a real execution
platform. An extensive set of experiments have been performed to analyze the impact on the performance of
some important parameters, among which the number of parallel nodes and the ratio between computation and
communication load.

1. Introduction

Space-aware applications (SAAs) are applications that rely on the
explicit representation of a territory, that is, a spatial environment on
which data and objects are defined (Amouroux et al., 2007; Shook et
al., 2013). To improve the execution efficiency and the scalability of
complex space-aware applications, the computation can be parallelized
on distributed nodes, and the partitioning can be driven by the topolog-
ical properties of the territory itself. Specifically, it is possible to assign
different regions of the territory to different computing nodes which
can process local data in parallel. Urban-computing, geology, biology,
hydrology, social sciences, logistics and transportation, smart electri-
cal grids, are significant examples of application fields strongly related
to SAAs (Cicirelli et al., 2016a; Gong et al., 2013; Tang et al., 2011;
Garofalo et al., 2017).

SAAs are becoming increasingly recurrent also due to the rapid
emergence of two relatively novel computation paradigms, specifically
the “Internet of Things” (IoT) (Atzori et al., 2010; Lee and Lee) and
some new distributed forms of computing, like Fog Computing and
Edge Computing (Bonomi et al., 2012; Krishnan et al., 2015; Hu et al.,
2017), where the computation is brought closer to final users and/or

∗ Corresponding author.
E-mail address: carlo.mastroianni@icar.cnr.it (C. Mastroianni).

where the data to elaborate is produced. In these scenarios, it is natural
to manage data through the use of computing entities distributed over
the territory, in order to perform computation as close as possible to
data sources and increase the performance. The multi-agent paradigm
is commonly used in the literature for the modeling and implementation
of SAAs (Amouroux et al., 2007; Shook et al., 2013): the computation
is executed by agents (Wooldridge, 2002) that live and operate in the
territory.

Usually, SAAs cannot be parallelized through an “embarrassingly
parallel” approach (Ekanayake and Fox, 2010), i.e., computation at the
single nodes cannot be performed in isolation because parallel tasks
need to exchange data during computation. For example, a smart city
application that analyzes the user mobility typically requires that the
events occurred in a city neighborhood are communicated to the adja-
cent neighborhoods (Harri et al., 2009). In this context, a common
challenge is to cope with synchronization and communication issues
affecting the execution performance (Shook et al., 2013; Gong et al.,
2013) of parallel SAAs, and ensure a continuous view of the territory
despite its partitioning (Cordasco et al., 2013). More in general, there
is a strong need for methodological approaches that help analyzing the
performance of the parallel execution of space-aware applications.

https://doi.org/10.1016/j.jnca.2018.08.015
Received 14 December 2017; Received in revised form 3 July 2018; Accepted 25 August 2018
Available online 30 August 2018
1084-8045/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jnca.2018.08.015
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/jnca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2018.08.015&domain=pdf
mailto:carlo.mastroianni@icar.cnr.it
https://doi.org/10.1016/j.jnca.2018.08.015

F. Cicirelli et al. Journal of Network and Computer Applications 122 (2018) 115–127

Fig. 1. A territory partitioned into regions which are associated with parallel computing nodes. Two alternative types of partitioning are shown, monodimensional
and bidimensional.

In this paper, we present and discuss a framework that helps to
assess and predict the performance of general parallel SAAs by tak-
ing into account the overheads of computation, synchronization and
communication on the application performance. The framework per-
mits to consider a territory partitioned into regions exploiting both
monodimensional and bidimensional schemas. Each region, along with
the local entities, data and computation, is assigned to a distinct com-
puting node. The computation advances through successive steps, and
synchronization and data exchange are required between two consecu-
tive steps. The semantics of the distributed computation is captured by
using a Stochastic Time Petri net (Murata, 1989; Paolieri et al., 2016)
model, which represents the interactions among nodes, and specifically
the synchronization aspects.

With our framework, it is possible to analyze and predict the perfor-
mance of SAA applications in a large variety of scenarios. This objective
is achieved as follows. Firstly, a set of tests are executed on a real plat-
form, in order to estimate the random distributions of unit computation
and communication times at single nodes. Afterwards, the obtained ran-
dom distributions are used in order to predict, by simulation, the over-
all performance for different configurations of the system. We used two
different simulators: a Petri net simulator, i.e., Yasper, which directly
executes the Petri net model, and a purposely written Matlab simula-
tor. The latter simulator reproduces the same behavior, but is faster
and more flexible, as it permits to execute a parameter sweep analysis
and to use any kind of distribution for computation and communication
times, including those observed experimentally.1

In order to highlight the effectiveness of the proposed approach, the
framework was exploited to analyze the performance, in terms of exe-
cution time, of the parallel execution of a well-known algorithm, the
ant-based clustering and sorting algorithm (Deneubourg et al., 1990;
Bonabeau et al., 1999). This algorithm was chosen because it is the
ancestor of a large variety of bio-inspired algorithms based on the dis-
tribution of the computation among a large number of agents dispersed
in a territory.

Beyond analyzing the ant-based clustering and sorting algorithm,
we explain how the framework can be used to generalize the study and
establish a general relationship between the application performance
and a set of parameters, such as the number of nodes on which the
computation is partitioned, the density of agents, the average compu-
tation and communication load of a single agent, the relative weights
of computation and communication times. In addition, we compare the
performance obtained with monodimensional and bidimensional terri-
tory partitioning, in order to help the application experts to individuate
the most efficient option when both solutions are admissible. This kind
of analysis can help to predict the performance when the parameter
values are fixed, and to tune the behavior of the application when it is
possible to act on the parameter values.

The rest of the paper is organized as follows: Section 2 illustrates
how the parallelization is driven by space partitioning, and describes
the involved issues, specifically those related to the data exchange

1 Both the Petri net model and the Matlab simulator are available at the URL
http://apswarm.icar.cnr.it/applications/j2ee-modules/sc/jnca.

among parallel nodes; Section 3 presents the model of parallel execu-
tion, formally represented by a Petri net, and analyzes the overhead
induced by synchronization and communication; Section 4, after sum-
marizing the ant clustering and sorting algorithm used for the eval-
uation, reports and discusses the experimental analysis and perfor-
mance results obtained both in a real platform and through the pre-
sented framework; Section 5 discusses some relevant state-of-the-art on
the parallel execution of space-aware applications. Finally, Section 6
concludes the paper and provides some indications on future research
avenues.

2. Parallelizing execution through space partitioning

The aim of this section is to show how the territory partitioning
drives the parallel execution of SAAs. Many SAAs applications can be
profitably implemented on a bidimensional grid of cells (the territory)
where each cell can contain active and passive entities. An active entity,
also referred to as agent in the following, is able to perform autonomous
computation, explore and modify the territory and move around it. A
passive entity represent an object or data on which active entities per-
form the computation. The computation is assumed to advance in steps:
at each step, all the agents perform their piece of computation. Each
agent can operate and move only inside its visibility area individuated
by defining the visibility radius as the maximum distance, in terms of
cells, at which the agent can operate.

A natural way of optimizing the execution of algorithms working
on spatial data is to partition the territory into regions and assign each
region, along with the contained entities, to a different computing node
that is in charge of performing the computation pertaining to that por-
tion of the territory. Partitioning favors system scalability in that as the
size of the territory increases, more computing nodes can be used to
speed up the execution. A territory can be partitioned through either a
monodimensional or a bidimensional schema, as shown in Fig. 1.

Since the visibility area of agents can span across multiple regions
(see Fig. 2), an agent can require to access and/or manipulate data
assigned to different computing nodes. To this purpose, a duplication
mechanism can be adopted, which consists in replicating the edge areas
of adjacent regions at the end of each step (Cosenza et al., 2011; Cicirelli
et al., 2016a, 2016b). Such areas, referred to as borders, are kept aligned
by exchanging, at each step, update messages among the adjacent com-
puting nodes.

More in detail, the management of borders is performed as follows.
The border area of a region is composed of two distinct parts: the local
border and the mirror border. These two parts are portrayed in Fig. 3(a)
and (b), which show the borders in the cases of monodimensional and
bidimensional space partitioning, respectively. The local border is man-
aged by the local node and its content, i.e., the active and passive enti-
ties, is replicated in the mirror border of the adjacent nodes. The agents
located in a border area are mirrored by means of phantom agents (i.e.,
agents that hold the same information of original agents but do not
perform computation), while passive entities are simply duplicated.

The parallel execution approach described so far is implemented at
each node by performing the execution loop depicted in Fig. 4, where

116

http://apswarm.icar.cnr.it/applications/j2ee-modules/sc/jnca

F. Cicirelli et al. Journal of Network and Computer Applications 122 (2018) 115–127

Fig. 2. Example of a territory partitioning in which the visibility area is split among two adjacent regions (monodimensional partitioning) and four adjacent regions
(bidimensional partitioning).

Fig. 3. Border areas of adjacent nodes.

one iteration of the loop corresponds to the execution of an applica-
tion step. The loop includes three phases: first, the node executes the
local computation, which means that all the agents of the region per-
form their computation for the current step. Then, the node sends to its
neighbor nodes the update messages and, finally, the node waits for the
update messages coming from its neighbors.

Through the transmission of the update messages, a node commu-
nicates to its neighbors that it has completed the execution of the cur-

rent step. Therefore, the coordination of parallel execution is performed
through the exchange of update messages, which are used to implement
a synchronization barrier between a node and its adjacent nodes: once
the messages are received, the barrier is passed and the node can begin
the execution pertaining to the next step.

The approach described so far, which will be formally modeled in
the next section, refers to the cases where all the operations are local. It
is possible to extend the approach so as to include “global” operations,

117

F. Cicirelli et al. Journal of Network and Computer Applications 122 (2018) 115–127

Fig. 4. Execution loop for a single application-step.

Fig. 5. A simple Petri net modeling two periodic processes which require a
synchronization barrier.

i.e., operations that concern the whole territory and/or all the agents.
For example, broadcasting an information to all the agents or updating
some information on all the cells with a diffusive phenomenon. Global
operations can be supported by combining the execution loop of single
nodes (Fig. 4) with a synchronization barrier that involves all the nodes.
This aspect has been addressed in (Cicirelli et al., 2016a) and is not the
focus of this work.

3. A model for performance analysis

The efficiency of the computation carried out by exploiting the step-
based execution cycle described in Section 2, can be assessed by measur-
ing the average time needed to perform a step on all the nodes. Such
time, in the following referred to as average step time and denoted as
Tstep, is obtained by dividing the execution time of the parallel applica-
tion by the number of executed steps.

From Fig. 4 it is noticed that the average step time depends on the
amounts of time spent, for a single step, on three different activities:
(i) the local computation time, or simply computation time, i.e., the time
spent to perform agent operations at single nodes; (ii) the communi-
cation time, i.e., the time needed to transmit update messages among
adjacent nodes; (iii) the synchronization time, i.e., the time spent on syn-
chronization barriers. The relationship among these quantities is for-
malized through a Petri net model illustrated in Section 3.2, after a brief
introduction to Petri net which is given in Section 3.1. Successively, in
Section 3.3, we discuss how the computation and communication times
are related to the areas of the involved portions of the territory, i.e., of
regions and region borders, respectively.

3.1. Petri Nets and performance analysis

Petri nets (Murata, 1989; Peterson, 1977) are a well-know formalism
for the modeling and analysis of concurrent and distributed systems and
are particularly suitable to capture synchronization, mutual exclusion
and non-deterministic aspects. A Petri net is a bipartite and direct graph
consisting of two kinds of nodes called places and transitions. A place
can contain an arbitrary number of tokens. Arcs are used to connect
places to transitions and transitions to places. Arcs are weighed, and

in the following the weight of each arc is supposed to be one. Graphi-
cally, places are represented by empty circles, transitions by boxes, and
tokens by filled small circles. A transition is enabled and can fire when
all its incoming places hold at least one token. When a transition T
fires, one token is consumed at each incoming (input) place of T, and
one token is produced on each of the outgoing (output) places of T. As
an example, Fig. 5 reports a simple Petri net that models two periodic
processes P1 and P2 which, after executing their own tasks (modeled by
using transitions Task P1 and Task P2, respectively), need to synchro-
nize with each other before executing their tasks again. In this example,
the synchronization barrier is modeled through the transition Barrier.

Some enhanced versions of Petri nets permit to add timing informa-
tion to transitions so as to express their firing (or delay) time. Stochastic
Time Petri Nets (Paolieri et al., 2016) allow to express the firing time of
a transition as a random variable modeled by an arbitrary probability
distribution function. This feature is exploited in this paper to analyze
the performance of space-aware applications. The semantics of Stochas-
tic Time Petri Nets is provided in Appendix A.

3.2. A petri net model for parallel execution of SAAs

The loop of the parallel execution introduced in Section 2 (see
Fig. 4), which includes the synchronization barriers and the commu-
nication among neighbor nodes, is here formally modeled using the
Petri net language. Fig. 6 reports the Petri net model for the monodi-

Fig. 6. Petri net representing the local computation and data transmission
among six parallel nodes, in the case of monodimensional partitioning.

118

F. Cicirelli et al. Journal of Network and Computer Applications 122 (2018) 115–127

mensional scenario in the case that the territory is partitioned into six
regions, and the execution is parallelized on the six corresponding com-
puting nodes i ∈ {1… 6}. Six transitions, labeled as Ni, and depicted
in green in the figure, are respectively associated with each computing
node. The firing of a transition corresponds to the execution of the local
computation step at the corresponding node.

Each transition Ni is connected by inbound arcs to three input places,
and in accordance to Petri net firing semantics, the transition is enabled,
and the local computation can start, if all the input places hold at least
one token. The three input places are labeled as Di−1,i, Di+1,i and Ri.
The presence of a token in place Di−1,i(Di+1,i) means that the left(right)
neighbor node has already delivered its update message to the node
i. Ri is both an input and an output place of the transition Ni and it
models the fact that the computation at a given step cannot start before
the end of the computation at the previous step. Each transition Ni is
also connected by outbound arcs to three output places. One of them is
the place Ri described before. The other two output places are labeled
as Si,i−1 and Si,i+1. A token in the place Si,i−1(Si,i+1) indicates that the
computation at node i, for the current step, is completed and an update
message has to be sent to the left(right) neighbor node. Indeed, Si,i−1
and Si,i+1 are the input places of two “communication” transitions Ci,i−1
and Ci,i+1, depicted in blue in Fig. 6, which model the transmission of
the update messages from node i to the two neighbor nodes i − 1 and
i + 1, respectively. When a communication transition Ci,i−1(Ci,i+1) fires,
it produces a token in the output place Di,i−1(Di,i+1), which models that
the neighbor node i − 1(i + 1) has received the update message from
node i. The transitions and places related to the two extreme regions
(on the left and on the right) of the territory are modeled differently in
order to consider that these regions have only one neighbor.

In summary, the Petri net models a set of cyclic synchronization
barriers, whose semantics is that each node can execute a step when it
has completed the execution at the previous step and it has received the
data from the two neighbor nodes.

The initial state of the Petri net is depicted in Fig. 6(a), where all
the input places of transitions Ni contain one token, meaning that these
transitions are enabled, i.e., the computing nodes are ready to begin
the execution of the first step. This initial marking ensures that the first
operation at each node is the execution of computation, matching the
execution loop shown in Fig. 4. In Fig. 6, the ability to fire a transition
is represented by the presence of a red border on the box representing
the transition. Fig. 6(b) represents the situation after the computation
at nodes N3, N4 and N5, and after the transmission of data from N3
to N4 and from N5 to N4. N4 is now enabled to execute the next step,
because it has performed the previous computation and has received
the update messages from its neighboring nodes N3 and N5. In the Petri
net model, this corresponds to the presence of three new tokens at the
input places of N4, which means that the synchronization barrier which
precedes the next computation at node N4 has been successfully passed.
It is also noticed that nodes N3 and N5 are not yet enabled because they
are still waiting for the data regarding the computation of the previous
step at the neighbor nodes.

From the Petri net depicted in Fig. 6, with N computing nodes, it
emerges that the time experienced at a generic node i ∈ {1,2,… ,N} at
the end of the step k, denoted ad Ti(k), is determined by the recursive
expression (1):

Ti(k + 1) = max(Ti(k), Ti−1(k) + Ci−1,i(k), Ti+1(k) + Ci+1,i(k))

+ Tcompi
(k + 1) (1)

where Tcompi
(k) is the time needed by node i to compute the step k, and

Cm,n(k) is the time needed to send an update message from node m to
node n after the execution of step k. It is assumed that all the nodes
begin the execution at the same time, i.e., Ti(0) = 0 for each node.2

2 To let expression (1) be consistent for the nodes at the two extremes, the
values of T0(k) and TN+1(k) are set to 0 for each step k.

Fig. 7. Portion of a Petri net representing the computation and data transmis-
sion in the case of bidimensional partitioning.

We used this expression to simulate the Petri net with Matlab, as will
be discussed in Section 4.3.

The Petri net model can be easily extended to formalize also the
parallel execution in the case of bidimensional partitioning. In particu-
lar, the input and output places of each computing transition Ni need
to be changed to take into account that in a bidimensional scenario the
number of neighbor nodes is eight. The Petri net model for the bidi-
mensional case cannot be easily depicted graphically. Fig. 7 contains
an excerpt of the model, which shows that the execution at a node (the
central node in the figure) requires the reception of information by the
eight adjacent nodes.

The firing times of computation transitions, i.e., those depicted in
green in Figs. 6 and 7, and of communication transitions, depicted
in blue, are modeled through random variables, according to the
definition of Stochastic Time Petri Nets (see Appendix A). The distri-
butions of these random variables depend on the computation load
assigned to each node and on the communication burden among nodes,
as explained in the following.

3.3. Computation and communication load

The time needed to perform the local computations on the different
regions, and to send the update messages among adjacent regions, are
related to the portions of territory involved in computation and com-
munication. For the sake of simplicity, in this paper we consider the
case in which the density of agents is approximately uniform in the ter-
ritory, even though the framework is applicable to scenarios where this
assumption does not hold. In the considered case, the local computation
time needed to execute the agent operations at a node is approximately
proportional to the area of the local region. Analogously, the size of the
update messages sent to neighbor nodes, and therefore the communica-
tion time, is approximately proportional to the area of the involved bor-
der: indeed, each node builds a message to collect the updates occurred
in the local border area during the last time step.

For this reason, it is useful to compute how the areas of the regions
and of the borders are related to the number of computing nodes N
at which the parallel computation is performed, and to the value of
the visibility radius, as defined in Section 2, referred to as r in the
following. For the sake of simplicity, let us consider the scenario in
which the territory has a rectangular shape, with length L and height
H. We also assume that the territory is equally partitioned among the
N nodes. The area of a single region is independent from the type of
partitioning, monodimensional or bidimensional, and it is equal to A∕N,
where A = L · H is the area of the entire territory. Conversely, the area
of the borders must be computed separately for monodimensional and

119

F. Cicirelli et al. Journal of Network and Computer Applications 122 (2018) 115–127

Fig. 8. Monodimensional space partitioning.

bidimensional partitioning.
In the case of monodimensional partitioning, shown in Fig. 8, the

area of a single border is H · r. It is noticed that this area depends only
on the visibility radius and it is independent from the number of com-
puting regions.

In the case of bidimensional partitioning, there are three types of
border areas, depending on the relative positions of the two regions
involved in the communication: (i) the area involved in north–south
communication; (ii) the area involved in east–west communication and
(iii) the area involved in diagonal communication. These areas are
referred to as ANS, AEW and ADiag, respectively. In Fig. 9, ANS is the
area of rectangles3 ABC and GFE, AEW is the area of rectangles AHG
and CDE, and ADiag is the area of the rectangles A, C, E and G. There
can exist different possibilities to partition the territory and obtain the
same number of nodes. Let Ph and Pv, the number of horizontal and
vertical partitions of the territory, so that N = Ph · Pv. The choice of the
values of Ph and Pv determines the shape of the single regions and the
size of the border areas. With reference to Fig. 9, the areas of the bor-
ders can be expressed as:

ANS = (H∕Ph) · r AEW = (L∕Pv) · r ADiag = r · r (2)

It follows that the choice of Ph and Pv has an effect on the overall
amount of border information that needs to be transmitted from a node
to its adjacent nodes. This amount is proportional to the sum of the
border areas AB, which is AB = 2∗ANS + 2∗AEW + 4∗ADiag. In can be
easily derived that, given a number of nodes, the horizontal and ver-
tical partitioning that minimizes the quantity AB, is obtained when
Ph∕Pv =H∕L holds, i.e., when regions are square-shaped.4 In the case
of square-shaped territory the condition reduces to Pv = Ph.

This result, and in general the expressions for areas of regions and
borders discussed in this section, will be used in the following to esti-

3 Here, the notation “rectangle ABC” individuates the rectangle obtained as
the union of rectangles A, B and C.

4 Let l = L∕Pv and h = H∕Ph be respectively the length and the height of a
region, as shown in Fig. 9. We express AB in terms of l, by using the substitution
h = A

l , where A = l · h is the area of the region. We obtain:

AB(l) = 2(l + A
l
)r + 4r2 (3)

We evaluate the first derivative of AB(l) with respect to l and obtain:

dAB(l)
dl

= l2 − A
l2

· 2r (4)

In order to find the minimum of AB(l), we set its first derivative equal to zero,
which gives:

l =
√

A (5)

Since the second derivative at l =
√

A is positive, the minimum communication
burden is achieved when the region has a square shape. This is obtained when
Ph∕Pv =H∕L holds. Of course, the admissible options for the space partitioning
also depend on the number of nodes N, since there is the constraint N = Pv · Ph.

Fig. 9. Bidimensional space partitioning.

mate the values of computation and communication times.

4. Experimental analysis and performance results

In this section we present the performance results, obtained on a real
platform, and discuss how these results can be generalized by adopt-
ing the model of parallel execution described in the previous section.
The section is organized as follows: (i) in Section 4.1, we describe the
classical ant-based clustering and sorting algorithm, which is used as a
testbed; (ii) in Section 4.2, we report the performance results obtained
on a real platform; (iii) in Section 4.3, we validate the Petri net model
by showing that it is capable of reproducing and predicting the results
observed in the real platform; (iv) finally, in Section 4.4 we use the
model to generalize the analysis and predict the results in scenarios
with different numbers of nodes and different relationships between
computation and communication load.

4.1. The ant-based clustering and sorting algorithm

As an example of a space-aware application that can be parallelized
through a territory partitioning approach, in this paper we use the
ant-based clustering and sorting algorithm, inspired by the behavior
of some species of ants that cluster corpses to form a “cemetery” or sort
their larvae into separate piles. This algorithm can be considered as the
ancestor of a large number of bio-inspired and swarm intelligence algo-
rithms. The basic features of the clustering and sorting behavior of ants
can be reproduced by a simple model in which agents move over a ter-
ritory and pick up and deposit items on the basis of local information
(Deneubourg et al., 1990; Bonabeau et al., 1999).

If items are all of the same kind, the goal of ant-based clustering is to
create regions in which items are accumulated, leaving empty regions
in between. If items belong to a number of different types, or classes, the
objective becomes to sort items spatially, i.e., separate items of different
classes and cluster items of the same class. In the following we refer to
the sorting model, i.e., to the case in which items belong to different
classes, since the clustering model can be considered as a special case
of the sorting model.

The territory is modeled as a bidimensional grid of cells. Each agent
has visibility over the items located in its own cell and in the cells
distant no more than r cells, where r is the visibility radius. The set of
cells defined in this way is referred to as visibility area of the agent. Each
agent contributes to the spatial sorting of items by picking and dropping
items from/to the cells. At each step, every agent moves randomly in
the environment, towards an adjacent cell, and in the new cell performs
a drop or pick attempt, according to whether it already holds an item,
picked from another cell, or not. The pick and drop operations are driven
by corresponding probability functions.

Let C be the number of predefined classes, and c = 1…C the class
of a given item. The probability with which an agent picks an item of
a given class c from the cell where it is currently located, referred to as

120

F. Cicirelli et al. Journal of Network and Computer Applications 122 (2018) 115–127

Table 1
Experimental results with monodimensional partitioning. Time is measured in ms.

N w Tcomp Tcomp Tstep 𝛼 𝛽

4 wl 89.78 90.79 174.84 0.001197 0.01452
4 wm 122.58 120.54 234.2 0.001225 0.01446
4 wh 151.40 149.96 287.36 0.001211 0.01439
9 wl 39.69 89.38 147.44 0.001190 0.01430
9 wm 53.44 121.27 202.38 0.001202 0.01455
9 wh 67.74 147.73 259.80 0.001219 0.01418

Table 2
Experimental results with bidimensional partitioning. Time is measured in ms.

N w Tcomp Tadj Tdiag Tstep 𝛼 𝛽

4 wl 88.65 45.63 4.40 143.01 0.00118 0.01460
4 wm 119.09 60.45 5.49 183.43 0.00119 0.01450
4 wh 149.31 76.58 6.58 236.53 0.00119 0.01470
9 wl 40.48 30.99 4.30 83.93 0.00121 0.01487
9 wm 55.05 41.11 5.23 120.62 0.00123 0.01480
9 wh 67.38 50.66 5.90 147.58 0.00121 0.01459

Ppick(c), is defined as:

Ppick(c) =
(kp

kp + f (c)

)2
(6)

In formula (6), f(c) gives the number of items of class c, accumulated
in the cells within the visibility area of the agent, divided by the overall
number of items of all classes that are located in the same area. As
more items of a class c are accumulated in the visibility area of the
agent, f(c) increases and the value of the pick probability for this class
becomes lower, and vice versa. This has the effect of inducing agents to
pick items that are uncommon in the visibility area, and ignore items of
the class that is being accumulated. The parameter kp is a non-negative
value used to tune the clustering effort. In the tests performed in this
work it is set to 0.1, as in (Deneubourg et al., 1990).

The probability that a loaded agent drops an item of class c, Pdrop(c),
is defined as:

Pdrop(c) =
(

f (c)
kd + f (c)

)2
(7)

The drop probability increases as more items of class c are accumu-
lated in the visibility area of the agent. In this work, the parameter kd
is set to 0.3, as in (Deneubourg et al., 1990).

The effectiveness of the sorting algorithm is evaluated through a
spatial entropy function, based on the well-known Shannon formula for
the calculation of information content. The value of the entropy mea-
sures how well items are sorted in the territory. At the beginning of the
experiments items of the different classes are uniformly spread over the
territory, and the entropy value is close to 1. Then the value decreases to
values close to 0, meaning that the items have been sorted. The experi-
ment ends when the entropy value gets stabilized. More details on this
aspect can be found in (Bonabeau et al., 1999) and (Forestiero et al.,
2008).

4.2. Performance results on the real parallel platform

The ant-based sorting algorithm has been executed on a cluster in
which each computing node has CPU Intel(R) Xeon(R) CPU E5-2670
2.60 GHz and 128 GB RAM. As agent-based infrastructure, we used the
APSwarm platform (Cicirelli et al., 2016a). The nodes are intercon-
nected with an Intel Corporation I350 Gigabit Network. The territory on
which the ants operate is a square of 240×240 space units, so the area
A is equal to 57,600 square units. In the different sets of experiments,
the space was equally partitioned among four nodes and nine nodes,

both with monodimensional partitioning and bidimensional partition-
ing. With bidimensional partitioning, the resulting regions are square-
shaped: this choice is consistent with the result shown in Section 3.3,
i.e., the square shape minimizes the communication burden. The exe-
cution of one step on a computing node (see Section 2) corresponds to
the execution of one movement and of one pick or drop operation for
all the ant agents that are located on the region assigned to the node.

The overall number of agents is referred to as Nagents, and their
density, w = Nagents∕A, is uniform in the territory. We executed the
algorithm with three different values of the workload: a “low” work-
load, corresponding to Nagents =300,000, a “medium” workload, cor-
responding to Nagents =400,000 agents, and a “high” workload, corre-
sponding to Nagents =500,000 agents. The three values of agent density
that correspond to low, medium, and high workload are respectively
denoted as wl, wm and wh. The respective values are 5.21, 6.94 and
8.68 agents/square units. In all the three cases, the number of objects
that need to be clustered by ant agents was set to twice the number of
agents.

Table 1 shows the results of the experiments performed for the
scenario of monodimensional partitioning. In particular, the table
reports the average local computation time, referred to as Tcomp, the
average communication time, referred to as Tcomp, the average step
time Tstep (defined at the beginning of Section 3), and the compu-
tation/communication densities, denoted as 𝛼 and 𝛽, which will be
defined shortly. Analogous results are reported in Table 2 for the case
of bidimensional partitioning, except that the average communication
time is separately computed for the case of regions that are adjacent
horizontally or vertically,5 and for the case of regions that are adjacent
diagonally. The two quantities are denoted, respectively, as Tadj and
Tdiag. All the reported values are obtained by averaging the results of
10 runs: for each metric, we computed the 95% confidence intervals
X ± 𝜆X, obtained with Student’s t-distribution, where X is the mean
value of the metric. The value of 𝜆 resulted to be always lower than
0.05, which is a good indication of the reliability of the results.

We define the computation density 𝛼 as the amount of computation
time per agent, and the communication density 𝛽 as the amount of com-
munication time per agent.6 Both values, reported in Tables 1 and 2,

5 Since we are considering square-shaped regions, north-south and east-west
communications are equivalent.

6 For the scenario of bidimensional partitioning, the value of 𝛽 is defined with
respect to the communication time Tadj, as this time is much larger than Tdiag
and therefore has a higher effect on the overall performance.

121

F. Cicirelli et al. Journal of Network and Computer Applications 122 (2018) 115–127

Fig. 10. (a) real frequency distribution of the local computation time for the
scenario of bidimensional partitioning with nine nodes and low load; (b) pdf of
the Gamma distribution with same average and standard deviation as the real
frequency distribution.

are almost constant, always within a 5% difference.
For the case of monodimensional partitioning, the average compu-

tation and communication times can be expressed with equations (8)
and (9), respectively:

Tcomp = 𝛼 · w · A
N

(8)

Tcomp = 𝛽 · w · rH (9)

where A is the size of the whole territory, N is the number of nodes, r
is the visibility radius of agents and H is the height of the space, as in
Fig. 8. In the above expressions, the average computation and commu-
nication times are both expressed as the product of three factors related,
respectively, to: (i) the computation and communication densities, i.e.,
𝛼 and 𝛽; (ii) the agent density w, and (iii) the involved areas, i.e., A∕N
and rH.

For the case of bidimensional partitioning, the average computation
time can be expressed as:

Tcomp = 𝛼 · w · A
N

= 𝛼 · w · H2

N
(10)

The average communication times defined before, Tadj and Tdiag, can
be expressed as:

Tadj = 𝛽 · w · r ·
√

A√
N

= 𝛽 · w · r · H√
N

(11)

Tdiag = 𝛽 · w · r2 (12)

As for the case of monodimensional partitioning, the average com-
putation and communication times are both expressed as the product
of three factors related to the computation/communication density, the
agent density and the involved area. The area involved in the expression
of Tdiag, r,2 is considerably smaller than the area involved in the expres-
sion of Tadj, (r · H)∕(

√
N) since r ≪ H∕

√
N. As a result, Tdiag ≪ Tadj.

The expressions (8)–(11), and the fact that 𝛼 and 𝛽 are almost con-
stant, allow us to estimate the values of Tcomp and Tadj in different sce-
narios, for example with different numbers of nodes and different values
of the visibility radius, both with monodimensional and bidimensional
partitioning. These values are used in the framework to characterize
the random variables of the transitions of the Petri net illustrated in
Section 3.2, and then to predict the performance of the system in differ-
ent scenarios. Prior to the performance analysis, illustrated in Section
4.4, in the next subsection we validate the presented Petri net model
with respect to the real platform.

4.3. Validation of the petri net model

As discussed in the previous subsection, it is possible to estimate the
values of the computation and communication times starting from the
areas of the involved regions and borders. Such values can then be used
in the execution of a Petri net that models the parallel computation pro-
cess, as described in Section 3. The purpose is to estimate the average
step time and then the global computation time of the parallel pro-
cess. We first used the well-known Petri net tool Yasper (van Hee et al.,
2006), specifically its “automatic simulation” tool, and then we wrote
an ad hoc simulator in Matlab, which reproduces the same computation
modeled by the Petri net, specifically the recursive expression (1). After
verifying that the results are identical, we chose to execute the experi-
ments with the Matlab simulator, which is faster and more flexible, as
it permits to execute a parameter sweep analysis and to use any kind of
distribution for computation and communication times, including those
observed experimentally.7

We validated the simulation results with respect to the real platform
in two phases: (i) we extracted the frequency distributions of the real
computation and communication times, and used these distributions in
the Matlab simulator to characterize the firing times of the Petri net
transitions; (ii) we verified that the average step time obtained with
simulation is very close to the average step time measured on the real
platform.

Regarding the first phase, we collected the values of computation
and communication times measured on the real platform and analyzed
their frequency distributions. As an example, Fig. 10(a) shows the rela-
tive frequency histogram of the local computation time for the scenario
with nine nodes, bidimensional space partitioning and low load. We
computed the value of the Pearson coefficient to measure the corre-
lation between the experienced frequency distribution and some well-
known distributions, among which the normal distribution, the Gamma
distribution, the Poisson distribution and the lognormal distribution.
We found that the best similarity is with the Gamma distribution. In
Fig. 10(b) we plot the probability density function of the Gamma dis-
tribution with the same values of average and standard deviation as

7 Both the Petri net model and the Matlab simulator are available at the URL
http://apswarm.icar.cnr.it/applications/j2ee-modules/sc/jnca.

122

http://apswarm.icar.cnr.it/applications/j2ee-modules/sc/jnca

F. Cicirelli et al. Journal of Network and Computer Applications 122 (2018) 115–127

Fig. 11. Values of Tstep in the case of monodimensional partitioning, vs. the
number of nodes N, for different values of r.

Fig. 12. Values of Tstep in the case of bidimensional partitioning, vs. the number
of nodes, for different values of r.

the real distribution.8 It appears that the Gamma distribution with the
shape parameter equal to 25 is a good approximation of the real distri-
bution, and indeed the Pearson coefficient is equal to 0.981. A similar
conclusion was drawn for the communication time.

For the second phase of the validation, we run the Matlab simula-
tor for all the scenarios described before and summarized in Tables 1
and 2. To characterize the computation and communication times used
in the simulator, we used the Gamma distribution as described before.
We found that the values of the average step time computed with Mat-
lab never differ by more than 1.0% from the values obtained with the
real experiments. This outcome ensures that the simulator has a very
good reliability and also validates the use of the Gamma distribution to
reproduce the real computation and communication times.

This validation allowed us to use the Matlab simulator to analyze
different and more general scenarios, which is the topic of the next
section.

4.4. Simulation analysis

The aim of this section is to analyze the performance of the paral-
lel execution of the ant-based sorting algorithm, described in Section
4.1, using the Matlab simulator mentioned in Section 4.3. Two sets of
results are illustrated in this section. First, we analyze the execution
performance when varying the partitioning schema and the visibility
radius. Then we discuss how the performance is related to the ratio

8 The shape parameter of the Gamma distribution can be computed as 𝜇2∕𝜎2,
and the scale parameter as 𝜎2∕𝜇, where 𝜇 is the average and 𝜎 is the standard
deviation.

between computation and communication load.
For the first set of results, we adopted the values of computation

and communication densities defined and measured in Section 4.2, i.e.,
𝛼=0.0012 and 𝛽 =0.0143. As explained in Section 4.2, these values
were used to compute the values of computation and communication
times, using expressions (8)–(12). In turn, the latter values were used in
the Matlab simulator as the average values for the Gamma probability
distributions of computation and communication times.

The simulation was executed for the same territory as the one
described in Section 4.2, i.e., composed of 240×240 cells. The num-
ber of agents was set to 400,000, corresponding to the “medium” load
defined in Section 4.2. We then varied the number of nodes among
which the territory is partitioned and the visibility radius r, both with
monodimensional and bidimensional partitioning. Fig. 11 shows the
value of the average step time Tstep vs. the number of nodes, in the case
of monodimensional partitioning, for different values of the visibility
radius. Many interesting conclusions can be drawn from these results.
First, it is seen that the sequential time, i.e., the average step time expe-
rienced when all the computation is executed at a single node, is equal
to about 480 time units: therefore, parallelization is convenient only
for the values of r and N for which the average step time is lower than
480. For example, when the visibility radius is equal to 15, paralleliza-
tion on four or less than four nodes is not convenient, meaning that the
communication and synchronization overhead unmakes the advantage
deriving from the computation partitioning. Parallelization begins to
be convenient with five nodes or more. As the value of r reduces, par-
allelization becomes more and more effective: for example, with r=1
and 16 nodes the average step time is about 85 time units.

Fig. 12 reports the values of Tstep obtained in the case of bidi-
mensional partitioning, with different values of N and r. In this case,
parallelization is convenient in all the considered scenarios. More-
over, the value of Tstep is always lower than the corresponding value
obtained with monodimensional partitioning. For example, with N=16
and r=1, the value of Tstep is about 50 time units, while it is equal to
85 time units with monodimensional partitioning. The reason is that
the communication time is lower in the case of bidimensional parti-
tioning: from Expressions (9) and (11) it is seen that the communica-
tion time Tadj is lower than the communication time experienced with
monodimensional partitioning by a factor

√
N. The advantage of bidi-

mensional partitioning proves that the lower communication time has a
higher effect on overall performances than the larger number of nodes
involved in synchronization barriers.9 This result is interesting because
it is hard to predict without resorting to experiments.

An interesting outcome of simulation experiments is that the aver-
age step time is strongly related to the ratio between the average com-
munication time and the average computation time. Therefore, in the
second set of experiments we analyzed this aspect.

In the case of monodimensional partitioning, the ratio Tcomp∕Tcomp,
from expressions (8) and (9), is:

Tcomp
Tcomp

= 𝛽

𝛼
· r

L
· N (13)

This ratio is equal to the product of three components: (i) the ratio
between the communication and computation densities; (ii) a compo-
nent with a geometrical meaning, i.e., the ratio between the visibility
radius and the length of the territory, and (iii) the number of nodes
among which the computation is distributed. Expression (13) can be
formulated so as to isolate the first two contributions from the contri-
bution related to the number of nodes:
Tcomp
Tcomp

= Rl · N (14)

9 Synchronization barriers involve nine nodes with bidimensional partition-
ing and only three nodes with monodimensional partitioning.

123

F. Cicirelli et al. Journal of Network and Computer Applications 122 (2018) 115–127

Fig. 13. Values of Tstep vs. Rl, for different numbers of nodes, with monodimen-
sional partitioning.

In Expression (14), the ratio Rl summarizes the relative weight of the
communication with respect to computation, irrespective of the num-
ber of nodes. Fig. 13 reports the values of Tstep obtained when vary-
ing the values of Rl and the number of nodes N. In these experiments,
the sequential time is set to 1 so as to normalize all the other times
with respect to it. Therefore, parallelization is convenient for the values
of Rl and N for which the average step time is lower than 1. Fig. 13
shows that the average step time increases with the value of Rl, i.e.,
with the relative weight of the communication with respect to compu-
tation. It is also interesting to notice that the use of a larger number
of parallel nodes is highly beneficial only when the relative weight of
communication is low. For example, with Rl =0.125, the average step
time is 0.65 when using two nodes, while it is only 0.21 when using
sixteen nodes. Conversely, when the weight of communication is high,
e.g., with Rl =2, the average step time is barely affected when increas-
ing the number of nodes. The reason is that the communication time,
which in this case prevails on the computation time, does not depend
on the number of nodes, as seen in Expression (9). In conclusion, it is
possible to take full benefit from parallelization, with monodimensional
partitioning, only when the overhead of communication is limited.

In the case of bidimensional space partitioning, we focus on the
communication time Tadj – since Tdiag ≪ Tadj, as discussed in Section
4.2 – and therefore on the ratio Tadj∕Tcomp. From expressions (10) and
(11), for a square-shaped territory in which H= L, this ratio can be
expressed as:

Tadj
Tcomp

= 𝛽

𝛼
· r

L
·
√

N (15)

or, analogously to the monodimensional case, as:

Tadj
Tcomp

= Rb ·
√

N (16)

This expression is very similar to Expression (14), and it is also
noticed that the component that does not depend on the number of
nodes, Rb, has the same expression as the analogous component Rl
derived for the monodimensional scenario. However, this time the ratio
increases more slowly with the number of nodes, as it is proportional to√

N instead of N. Fig. 14 shows how the value of Tstep varies with the
values of Rb and of the number of nodes N. As opposed to the case of
monodimensional partitioning, increasing the number of nodes allows
to improve the performance, i.e., to reduce the value of Tstep, for each
value of the ratio Rb. Indeed, as seen in Expression (11), the communi-
cation time decreases when the number of nodes increases. Therefore
there is a benefit from a higher degree of parallelization due to the
lower overhead related to the communication time. As discussed before,
this benefit occurs despite the fact that each node must synchronize
with eight neighbor nodes instead of only two, as in the monodimen-
sional partitioning scenario.

Fig. 15 compares the values of Tstep obtained with monodimensional

Fig. 14. Values of Tstep vs. Rb, for different numbers of nodes, with bidimen-
sional partitioning.

Fig. 15. Values of Tstep vs. R, for different numbers of nodes. Comparison
between monodimensional and bidimensional partitioning.

and bidimensional partitioning. As we derived that the expressions of
Rl and Rb are the same, it is possible to do this comparison by setting
R=Rl =Rb. We see that the bidimensional partitioning is convenient for
any value of R and N.

The described approach can be followed also with other types of
space-aware application, to help the application experts individuate
the most efficient option when both partitioning schemas – monodi-
mensional and bidimensional – are admissible. More in particular, the
approach consists in executing a set of tests on a real platform to derive
the random distributions of computation and communication times.
Then, these distributions can be used in the Matlab simulator to pre-
dict the performance with different space partitioning schemas.

5. Related work

The state-of-the-art in the recent literature clearly shows a growing
interest on addressing the issues related to space-aware applications. In
particular, agent-based spatially explicit models have been widely used
to study a variety of phenomena including, for example, bio-inspired
systems, traffic management and simulation, platforms for urban com-
puting, GIS systems, etc. Multi-agent system (MAS) platforms provide
support to execute and/or simulate systems modeled by using the agent
metaphor. The services provided by MAS platforms include the support
to agent lifecycle, communication among agents, agent perception and
environment management. Especially for the case of spatially-explicit
agent-based systems (Amouroux et al., 2007; Shook et al., 2013), the
way the environment is represented, and the services made available to
sense and act upon the environment are of utmost importance. Exam-
ples of well-known platforms where spatial environments are natively
supported are Repast Simphony (North et al., 2013), Mason (Luke et
al., 2005), NetLogo (Tisue and Wilensky, 2004) and Gama (Amouroux
et al., 2007).

124

F. Cicirelli et al. Journal of Network and Computer Applications 122 (2018) 115–127

As the size and the sophistication of the problems increase, the
exploitation of parallel and high-performance computing becomes
mandatory (Shook et al., 2013; Parker and Epstein, 2011). If compared
to the large number of existing MAS platforms, though, only few Par-
allel and Distributed MAS (PDMAS) platforms provide a native support
for the parallel execution of agent-based systems. Moreover, the devel-
opment of distributed systems based on PDMAS is a non-trivial task
as it requires deep parallel programming skills, and the efficient and
high performing execution of a model in a distributed context remains
a challenging issue (Rousset et al., 2016; Cicirelli et al., 2015). A
research effort for the automatic parallelization of general MAS systems
is reported in (Scheutz and Schermerhorn, 2006), whereas some efforts
related to the automatic parallelization of spatially-explicit agent-based
systems are reported in (Cicirelli et al., 2015, 2016a; Scheutz and Scher-
merhorn, 2006).

Examples of PDMAS platforms suited to execute spatially-explicit
agent-based systems are D-MASON (Cordasco et al., 2013), Flame
(Coakley et al., 2012), Pandora (Angelotti et al., 2001), RepastHPC
(Collier and North, 2012) and Swages (Scheutz et al., 2006). These plat-
forms differ from each other on the basis of features like the adopted
programming language, the mechanisms used to support distributed
communications, the exploited synchronization mechanisms among
computing nodes, the support to load balancing and so forth (Rous-
set et al., 2016). In D-MASON (Cordasco et al., 2013) and RepastHPC
(Collier and North, 2012), the environment is divided into cells, which
are assigned to different computing nodes in order to distribute the
developed system. Both a monodimensional and a bidimensional cell
partitioning are supported. To provide the perception of a continu-
ous environment, even in a distributed setting, overlapping zones, also
called “Area of Interest” (AOI), are considered. Managing AOIs require
to make local copies of the borders among adjacent partitions, and keep
such copies updated. The concept of AOI derives from the so-called
ghost areas originally introduced in (Ripeanu et al., 2001). The main
difference between the D-MASON and RepastHPC is that in the former
work the notion of cells and partitions coincide, while in the latter the
cells are of equal size and a partition is composed of a subset of con-
tiguous cells. Also Pandora (Angelotti et al., 2001) exploits an approach
similar to D-MASON and RepastHPC for system distribution.

In Flame (Coakley et al., 2012), a MAS system is distributed over the
computing nodes on the basis of the agents’ spatial coordinates that can
be either in 2D or 3D. The environment is still perceived as continuous
but it is partitioned by considering agents’ distribution. Agents that can
potentially communicate among each other are grouped on the same
node with the aim of optimizing the overhead generated by inter-node
communications.

A different approach for managing the environment relies on the
use of tuple-based middlewares. The TOTA middleware (Mamei and
Zambonelli, 2004) exploits spatially distributed tuples, which are prop-
agated across a network in order to implement diffusive spaces. Tuples
can be injected into the system from any network node and can propa-
gate and diffuse according to some tuple-specific propagation patterns.
Agents can sense such tuples and decide how to react to them.

The high-performance parallel execution of computationally inten-
sive and spatially-explicit agent-based systems on multicore platforms is
considered in (Gong et al., 2013) and (Tang et al., 2011). The environ-
ment is decomposed into equal-sized horizontal regions and each region
is assigned for execution on a different CPU core. In (Gong et al., 2013)
the focus is on the spatial interactions among agents, on the spatial dif-
fusion of opinions and on the consensus building that affects individual
agent decisions. Execution performances are assessed by varying (i) the
size and the population of the environment, and (ii) the range of inter-
actions, i.e., the spatial distance over which agents are able to interact
with other agents and with the environment. Mutual exclusion algo-
rithms are used to regulate inter-region agent interactions thus avoiding
conflicts among agents operating on different regions. In (Tang et al.,
2011), instead, ghost zones are used to mirror areas of interest among

partitions, and barrier and lock techniques are used for the synchro-
nization of system execution among parallel processors.

In order to speed up the distributed execution of spatially-explicit
agent-based systems while avoiding conflicts among agents, in (Rubio–
Campillo and Cela, 2010) and (Wittek and Rubio-Campillo, 2012) each
partition allocated for execution on a computing node is further divided
into four matrices, each of them being managed by an independent log-
ical process numbered from 0 to 3. The PDMAS only allows the exe-
cution of simultaneous logical processes in the distributed context if
they have the same number, thus avoiding the concurrent execution of
adjacent agents capable of modifying the same spatial partition. A simi-
lar, but more general, approach for solving conflicts was independently
proposed in (Cicirelli et al., 2015) and (Cicirelli et al., 2016a). Here,
a particular notion of logical time was purposely introduced in order
to guarantee a conflict-free execution of agents allocated on different
regions.

A framework for the efficient parallel execution of spatially-explicit
agent-based systems is proposed in (Shook et al., 2013). The framework
supports agent-grouping primitives, four different space partitioning
techniques (monodimensional, bidimensional, quad-tree and recursive
bisection partitioning), a communication-aware load balancing strat-
egy, and the use of proxy (ghost) entities as local copies of entities
residing on other partitions. Agent groups and space partitions are then
assigned for execution on the available computing nodes. The main
goal is to reduce inter-process communication that, as confirmed by
simulation experiments, heavily impairs the achievable execution per-
formance.

Recently, the emerging of Cloud platforms has increased the possi-
bility of improving the execution of parallel algorithms, for example by
resorting to a large number of servers on a single or on multiple data
centers. The relationship between the amount of computation and the
amount of communication is recognized as an important issue when
executing parallel Cloud applications. The transmission of data among
distributed nodes of a Cloud platform heavily influences the scalabil-
ity and the performance of parallel applications (ExpóSito et al., 2013).
Therefore, the estimation of the amount of data that needs to be trans-
mitted among the computing nodes is of paramount importance. In
(Roloff et al., 2012), different communication patterns are evaluated,
and the authors notice that none of the major Cloud providers offer
information about the specific network interconnections used among
the machines, and it is impossible to determine the network latency or
distance between nodes. This can provide challenges to communication-
intensive applications, and it is a major disadvantage compared to on-
premises clusters. A possible solution to this lack of control can be
addressed by the SDN (Software-Defined Networking) paradigm, which
allows routing and forwarding rules to be controlled by software instead
of being hardwired in the routers (Malik et al., 2013).

6. Conclusion and future work

This paper has presented an original framework aimed at assessing
and predicting the execution performance of agent-based space-aware
applications (SAAs) that are executed in a parallel context. The par-
allelization is obtained by partitioning the territory into regions and
assigning each region to a distinct computing node. The presented
framework relies on Stochastic Time Petri Nets, and it is able to evalu-
ate the performance of a parallel SAA for different execution settings.
An execution setting is characterized by the type of territory parti-
tioning (i.e., monodimensional or bidimensional), the number of par-
allel computing nodes, and the amount of computation assigned to the
agents. The approach allows to predict the performance starting from
the knowledge of the random distributions of local computation and
communication times. We validated the framework, for the well-known
ant clustering and sorting algorithm, by comparing the performance
experienced in a real platform to that predicted by the framework. We
also performed an extensive set of simulation experiments to assess the

125

F. Cicirelli et al. Journal of Network and Computer Applications 122 (2018) 115–127

performance in more general scenarios. An outcome of the experiments
is that the performance is strongly related to the ratio between local
computation and communication load. The expressions derived for this
ratio allowed us to compare the performance obtained when adopt-
ing, for the same SAA, monodimensional and bidimensional territory
partitioning. From the experiments, it emerged that the bidimensional
partitioning performs better despite its higher synchronization cost.

The presented approach can be readily exploited when the spatial
distribution of agents is uniform. When this assumption does not hold,
the actual spatial distribution of the load must be considered to obtain
the random distributions of computation and communication times for
the different regions, and then use these distributions in the simula-
tor. In addition, the approach must be extended when there is the need
to include “global” operations, i.e., operations that concern the whole
territory and/or all the agents.

Prosecution of the work is geared at using the framework to asses

the performance of SAAs where: (i) the local computation and commu-
nication times are characterized by different random distributions; (ii)
the agents and the computation are not uniformly distributed; (iii) dif-
ferent techniques for territory partitioning are adopted, e.g., quad-tree
or recursive bisectional. We are also building an analytical model of
the system by using a Markov chain, for which we define a state for
each possible marking of the Petri net, and compute the transition rate
between each couple of states. This analysis can be used, for example,
to compute the average time that each node needs to wait at a synchro-
nization barrier.

Acknowledgements

This work was partially funded by the project DOMUS, MIUR grant
PON03PE_00050_2.

Appendix A. Stochastic Time Petri Nets

A Stochastic Time Petri Net (STPN) is a tuple10:⟨
P,T,A−,A+,C, F

⟩
where P and T are disjoint sets of places and transitions, A− ⊆ P × T and A+ ⊆ T × P define arc connections, C is a set of cumulative distribution

function, and F ∶ T → C associates a cumulative distribution function to each transition.
Given an STPN

⟨
P,T,A−,A+,C, F

⟩
, a marking m ∈ ℕP assigns a natural number of tokens to each place of the net. A transition t is enabled by m

if m assigns at least one token to each of its input places. The set of transitions enabled by m is denoted as E(m).
Let ci =

⟨
mi, ⃖⃖⃗𝜏i

⟩
be a couple in which m is a marking and the vector ⃖⃖⃗𝜏i ∈ ℝE(m)

≥0 assigns a firing time to each enabled transition, and let c0 =
⟨
m0, ⃖⃖⃗𝜏0

⟩
be the couple composed of the initial marking m0 and the initial vector ⃖⃖⃗𝜏0 of firing times. An execution of the STPN is given by a (finite or infinite)
path: c0

𝛾1⟶ c1
𝛾2⟶ c2

𝛾3⟶ c3 …
where 𝛾 i ∈ T is the ith transition fired along the execution of the net. After the firing of 𝛾 i:

• the next transition 𝛾 i+1 is selected from the set of enabled transitions with the minimum time to fire;
• after the firing of 𝛾 i+1, the new marking mi+1 is derived by (i) removing a token from each place p such that (p, 𝛾 i+1) ∈ A−, (ii) adding a token

in each place p such that (𝛾 i+1, t) ∈ A+. A transition t enabled by mi+1 is said to be persistent if it is distinct from 𝛾 i+1, and it is enabled also by
mi and by the intermediate marking after steps (i) and (ii); otherwise t is said to be newly enabled;

• for each newly enabled transition t, its time to fire is sampled according to the distribution F(t); for each persistent transition t, the time to fire
of t is reduced by the sojourn time in the previous marking, i.e., ⃖⃗𝜏 i+1(t) = ⃖⃗𝜏 i(t) − ⃖⃗𝜏 i+1(𝛾i+1).

References

Amouroux, E., Chu, T.-Q., Boucher, A., Drogoul, A., 2007. Gama: an environment for
implementing and running spatially explicit multi-agent simulations. In: Pacific Rim
International Conference on Multi-agents. Springer, pp. 359–371.

Angelotti, E.S., Scalabrin, E.E., Ávila, B.C., 2001. Pandora: a multi-agent system using
paraconsistent logic. In: Computational Intelligence and Multimedia Applications,
2001. ICCIMA 2001. Proceedings. Fourth International Conference on. IEEE, pp.
352–356.

Atzori, L., Iera, A., Morabito, G., 2010. The internet of things: a survey. Comput. Netw.
54 (15), 2787–2805.

Bonabeau, E., Dorigo, M., Theraulaz, G., 1999. Swarm Intelligence: from Natural to
Artificial Systems. Oxford University Press, New York, NY, USA.

Bonomi, F., Milito, R., Zhu, J., Addepalli, S., 2012. Fog computing and its role in the
internet of things. In: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing. ACM, pp. 13–16.

Cicirelli, F., Giordano, A., Nigro, L., 2015. Efficient environment management for
distributed simulation of large-scale situated multi-agent systems. Concurrency
Comput. Pract. Ex. 27 (3), 610–632.

Cicirelli, F., Forestiero, A., Giordano, A., Mastroianni, C., 2016. Transparent and
efficient parallelization of swarm algorithms. ACM Trans. Autonom. Adapt. Syst. 11
(2) 14:1–14:26.

Cicirelli, F., Forestiero, A., Giordano, A., Mastroianni, C., Spezzano, G., 2016. Parallel
execution of space-aware applications in a cloud environment. In: 24th Euromicro
Int. Conf. On Parallel, Distributed, and Network-based Processing, PDP 2016,
Heraklion, Greece, pp. 686–693.

Coakley, S., Gheorghe, M., Holcombe, M., Chin, S., Worth, D., Greenough, C., 2012.
Exploitation of high performance computing in the flame agent-based simulation
framework. In: High Performance Computing and Communication & 2012 IEEE 9th
International Conference on Embedded Software and Systems (HPCC-ICESS), 2012
IEEE 14th International Conference on. IEEE, pp. 538–545.

Collier, N., North, M., 2012. Repast HPC: a Platform for Large-scale Agentbased
Modeling. Wiley.

Cordasco, G., De Chiara, R., Mancuso, A., Mazzeo, D., Scarano, V., Spagnuolo, C., 2013.
Bringing together efficiency and effectiveness in distributed simulations: the
experience with d-mason. Simulation 89 (10), 1236–1253.

Cosenza, B., Cordasco, G., Chiara, R.D., Scarano, V., 2011. Distributed load balancing for
parallel agent-based simulations. In: 19th Euromicro Int. Conf. On Parallel,
Distributed, and Network-based Processing, PDP 2011, Ayia Napa, Cyprus, pp.
62–69.

Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétien, L.,
1990. The dynamics of collective sorting robot-like ants and ant-like robots. In:
Proc. Of the First International Conference on Simulation of Adaptive Behavior on
from Animals to Animats. MIT Press, Cambridge, MA, USA, pp. 356–363.

Ekanayake, J., Fox, G., 2010. High performance parallel computing with clouds and
cloud technologies. In: Cloud Computing. Springer, pp. 20–38.

ExpóSito, R.R., Taboada, G.L., Ramos, S., Touriño, J., Doallo, R., 2013. Performance
analysis of hpc applications in the cloud. Future Generat. Comput. Syst. 29 (1),
218–229.

Forestiero, A., Mastroianni, C., Spezzano, G., 2008. Qos-based dissemination of content
in grids. Future Generat. Comput. Syst. 24 (3), 235–244.

Garofalo, G., Giordano, A., Piro, P., Spezzano, G., Vinci, A., 2017. A distributed real-time
approach for mitigating CSO and flooding in urban drainage systems. J. Netw.
Comput. Appl. 78, 30–42.

Gong, Z., Tang, W., Bennett, D.A., Thill, J.-C., 2013. Parallel agent-based simulation of
individual-level spatial interactions within a multicore computing environment. Int.
J. Geogr. Inf. Sci. 27 (6), 1152–1170.

Harri, J., Filali, F., Bonnet, C., 2009. Mobility models for vehicular ad hoc networks: a
survey and taxonomy. IEEE Commun. Surv. Tutor. 11 (4), 19–41.

Hu, P., Dhelim, S., Ning, H., Qiu, T., 2017. Survey on fog computing: architecture, key
technologies, applications and open issues. J. Netw. Comput. Appl. 98, 27–42.

10 In this paper, only a subset of the features of the STPNs are exploited. In particular, with reference to the definitions given in (Paolieri et al., 2016), for each
transition we assume: an enabling function that evaluates always to true; an earliest firing time and a latest firing time of 0 and +∞, respectively; a constant weight
function; a null update function.

126

http://refhub.elsevier.com/S1084-8045(18)30272-8/sref1
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref2
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref3
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref4
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref5
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref6
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref7
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref8
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref9
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref10
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref11
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref12
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref13
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref14
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref15
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref16
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref17
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref18
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref19
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref20

F. Cicirelli et al. Journal of Network and Computer Applications 122 (2018) 115–127

Krishnan, Y.N., Bhagwat, C.N., Utpat, A.P., 2015. Fog computing- network based cloud
computing. In: Electronics and Communication Systems (ICECS), 2015 2nd
International Conference on. IEEE, pp. 250–251.

I. Lee, K. Lee, The Internet of Things (IoT): Applications, Investments, and Challenges for
Enterprises, Business Horizons.

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G., Mason, 2005. A multiagent
simulation environment. Simulation 81 (7), 517–527.

Malik, M.S., Montanari, M., Huh, J.H., Bobba, R.B., Campbell, R.H., June 24-27, 2013.
Towards SDN enabled network control delegation in clouds. In: 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
Budapest, Hungary, pp. 1–6.

Mamei, M., Zambonelli, F., 2004. Programming pervasive and mobile computing
applications with the tota middleware. In: Pervasive Computing and
Communications, 2004. PerCom 2004. Proceedings of the Second IEEE Annual
Conference on. IEEE, pp. 263–273.

Murata, T., 1989. Petri nets: properties, analysis and applications. Proc. IEEE 77 (4),
541–580.

North, M.J., Collier, N.T., Ozik, J., Tatara, E.R., Macal, C.M., Bragen, M., Sydelko, P.,
2013. Complex adaptive systems modeling with repast simphony. Complex Adapt.
Syst. Model. 1 (1), 1.

Paolieri, M., Horváth, A., Vicario, E., 2016. Probabilistic model checking of regenerative
concurrent systems. IEEE Trans. Software Eng. 42 (2), 153–169.

Parker, J., Epstein, J.M., 2011. A distributed platform for global-scale agent-based
models of disease transmission. ACM Trans. Model Comput. Simulat 22 (1), 2.

Peterson, J.L., 1977. Petri nets. ACM Comput. Surv. 9 (3), 223–252.
Ripeanu, M., Iamnitchi, A., Foster, I., 2001. Cactus application: performance predictions

in grid environments. In: European Conference on Parallel Processing. Springer, pp.
807–816.

Roloff, E., Diener, M., Carissimi, A., Navaux, P.O.A., 2012. High performance computing
in the cloud: deployment, performance and cost efficiency. In: Cloud Computing
Technology and Science (CloudCom), 2012 IEEE 4th International Conference on.
IEEE, pp. 371–378.

Rousset, A., Herrmann, B., Lang, C., Philippe, L., 2016. A survey on parallel and
distributed multi-agent systems for high performance computing simulations.
Comput. Sci. Rev. 22, 27–46.

Rubio-Campillo, X., Cela, J., 2010. Large-scale agent-based simulation in archaeology:
an approach using high-performance computing. In: Proceedings of the 38th Annual
Conference on Computer Applications and Quantitative Methods in Archaeology,
Granada, Spain, pp. 153–159.

Scheutz, M., Schermerhorn, P., 2006. Adaptive algorithms for the dynamic distribution
and parallel execution of agent-based models. J. Parallel Distr. Comput. 66 (8),
1037–1051.

Scheutz, M., Schermerhorn, P., Connaughton, R., Dingler, A., 2006. Swages-an
extendable distributed experimentation system for large-scale agent-based alife
simulations. Proceed. Artif. Life X, 412–419.

Shook, E., Wang, S., Tang, W., 2013. A communication-aware framework for parallel
spatially explicit agent-based models. Int. J. Geogr. Inf. Sci. 27 (11), 2160–2181.

Tang, W., Bennett, D.A., Wang, S., 2011. A parallel agent-based model of land use
opinions. J. Land Use Sci. 6 (2–3), 121–135.

Tisue, S., Wilensky, U., 2004. Netlogo: design and implementation of a multi-agent
modeling environment. In: Proceedings of Agent, vol. 2004, pp. 7–9.

van Hee, K., Oanea, O., Post, R., Somers, L., an der Werf, J. M. v., 2006. Yasper: A tool
for workflow modeling and analysis. In: Proceedings of the Sixth International
Conference on Application of Concurrency to System Design (ACSD ’06). IEEE
Computer Society, Washington, DC, USA, pp. 279–282.

Wittek, P., Rubio-Campillo, X., 2012. Scalable agent-based modelling with cloud hpc
resources for social simulations. In: Cloud Computing Technology and Science
(CloudCom), 2012 IEEE 4th International Conference on. IEEE, pp. 355–362.

Wooldridge, M., 2002. An Introduction to Multi-agent Systems. John Wiley & Sons, Ltd.

Franco Cicirelli, Ph.D, is a researcher at ICAR-CNR (Italy)
since December 2016. He earned a Ph.D in System Engineer-
ing and Computer Science at the University of Calabria (Italy).
He was a researcher fellow at the University of Calabria (Italy)
from 2006 to 2015. His research work mainly focuses on
Software Engineering tools and methodologies for the model-
ing, analysis and implementation of complex time-dependent
systems. Research topics are agent-based systems, distributed
simulation, parallel and distributed systems, real-time sys-
tems, workflow management systems, Internet of Things and
cyber-physical systems. His research activities involve also
Petri Nets, Timed Automata and the DEVS formalism.

Agostino Forestiero received the Laurea degree in computer
engineering and the Ph.D. degree in computer engineering
from the University of Calabria, Cosenza, Italy, in 2002 and
2007, respectively. He is a researcher at the CNR Institute for
High Performance Computing and Networks, Rende, Italy. He
has published or presented more than 40 scientific papers on
international journals and conferences. His research interests
include pervasive computing, cloud and fog computing, social
mining and swarm intelligence. He has served as a Program
Committee Member of several conferences. He is co-founder
of the Eco4Cloud company (www.eco4cloud.com).

Andrea Giordano is a researcher at the National Research
Council of Italy (CNR) – Institute for High Performance Com-
puting and Networking (ICAR) - since March 2011. He earned
a Ph.D in System Engineering and Computer Science at the
University of Calabria (Italy), where he also earned a Master’s
degree in Computer Engineering. His research work mainly
focuses on: agent-based systems, parallel and distributed sys-
tems, swarm intelligence, distributed simulation, Internet of
things and cyberphysical systems.

Carlo Mastroianni received the Laurea degree and the PhD
degree in computer engineering from the University of Cal-
abria, Italy, in 1995 and 1999, respectively. He is a researcher
at the Institute of High Performance Computing and Network-
ing of the Italian National Research Council, ICAR-CNR, in
Cosenza, Italy, since 2002. Previously, he worked at the Com-
puter Department of the Prime Minister Office, in Rome. He
co-authored more than 100 papers published in international
journals, among which IEEE/ACM TON, IEEE TCC, IEEE TEVC
and ACM TAAS, and conference proceedings. He edited spe-
cial issues for the Journals Future Generation Computer Sys-
tems, the Journal of Network and Computer Applications, the
Computer Networks Multiagent and Grid Systems. His areas of
interest are cloud computing, urban computing, bio-inspired
algorithms, multi-agent systems.

127

http://refhub.elsevier.com/S1084-8045(18)30272-8/sref21
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref23
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref24
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref25
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref26
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref27
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref28
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref29
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref30
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref31
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref32
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref33
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref34
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref35
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref36
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref37
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref38
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref39
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref40
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref41
http://refhub.elsevier.com/S1084-8045(18)30272-8/sref42
www.eco4cloud.com

	Parallelization of space-aware applications: Modeling and performance analysis
	1. Introduction
	2. Parallelizing execution through space partitioning
	3. A model for performance analysis
	3.1. Petri Nets and performance analysis
	3.2. A petri net model for parallel execution of SAAs
	3.3. Computation and communication load

	4. Experimental analysis and performance results
	4.1. The ant-based clustering and sorting algorithm
	4.2. Performance results on the real parallel platform
	4.3. Validation of the petri net model
	4.4. Simulation analysis

	5. Related work
	6. Conclusion and future work
	Acknowledgements
	Stochastic Time Petri Nets
	References

